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ON THE SIMULATION OF HARMONICALLY RELATED SIGNALS,-..

INTRODUCTION

....-,,

In a number of applications, narrowband signal components occur that are harmonically related.
To understand harmonically related signals, it is sufficient to recognize that over any observation (or
analysis) interval, a narrowband signal u (t) may be represented as A (t) exp Ji '(t)), where A (t) 2 0 ' ".

is the amplitude function and (t) is the phase function of the relevant signal. Any two narrowband
signals up (t) and Uq (t) are considered to be harmonically related when the phase functions of the two
signals are linearly related. That is, when

kq (t)= qip (t) + a constant (la)

and the harmonic ratio q is any real number (not necessarily an integer). The instantaneous frequen-
cies of the two functions are therefore related as

fq(t) = ,(t)/2ir fq + Vq(t) '. p.%

= qr(t)/2ir =qLfp + vp(t)] = qfp(t), (Ib) S

where the "dot" over the variable implies the time derivative. Here fp(t), fq(t) are the instantane-
ous frequencies of the two signals, fp, Iq are the mean values of the instantaneous frequencies, and
Vp(t), Vq(t) are the zero-mean fluctuating components. For convenience, it is assumed that
fp(t) < fq(t) and I < q. "

This report formulates discrete mathematical functions that simulate the harmonic relations given
in Eq. (1) for implementation on a digital computer. The fluctuating components are random but
bounded in their excursion, and the fluctuation dynamics (rate of change) are controlled to emulate
signals that occur in practice.

FORMULATION OF THE PHASE FUNCTIONS

To formulate the discrete phase functions of harmonically related signals sampled at a rate off
Hz, let .

S= 4(n At) = 2 nrZ', ,

where the sample-time increment At is equal to I/f, and Z', is the integral of the instantaneous fre-
quency f,. That is,

nl n fi
Z',I = E f , At = E

Manuscript approved FebruaN 10. 1988.
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GERLACH, KUNZ. ANDERSON, AND FLOWERS j

This expression may be written in recurrence form as

Z'"= Z',-1 +- 

where Z'- = 0. Since phase need be determined only to modulo 27r (integral of instantaneous fre-
quency to modulo 1), and since the modulo of a sum of terms is equal to the modulo of the sum of
the modulos of each term, let '

Z,, Z' modulo I modulo 1.
fI I.

Applying the recurrence formula to the harmonically related instantaneous frequencies given in
Eq. (lb) and using the parameters for the q-subscripted (or higher frequency) signal, gives S

5.

Zq,, =Frac[Zq, _1 + (fq + v,)/fsj (2a)
r%

and
S

ZP,, =Frac[Z,,_1 + (fq + vP)/qf, [ (2b)

Here Zp, - Zq,_ 1 = 0, and the function Fracl...I implies taking only the fractional part of the
decimal argument. It is recognized that fq = qfp is the mean frequency of the higher frequency sig-

nal and v,, = ,q (n At) = q vp (n A t) is the fluctuating signal component of the higher frequency sig- f
nal. The resulting modulo-phase functions of the two harmonically related signals are

op, = 27rZ,,, and Ikq.n = 2 rZq.,n. (2c)

FORMULATION OF THE FREQUENCY-FLUCTUATION FUNCTION

At this point, a particular zero-mean deterministic function for v,, may be chosen. In this
',

report, however, the frequency function is chosen to be truly random and Gaussian-like but bounded
in its peak excursion from zero. To accomplish this, let ,, be a zero-mean Gaussian statistic with
standard deviation ar Hz. To bound the frequency-fluctuation function to absolute values no greater
than a a,, let

P= o Frac I /o a(1 . (3a)

where Frac)' I implies the fractional part of the argument while retaining the sign of ,. The statis-
tic v, is therefore a zero-mean random number whose probability density is

p,(v) = J-0o (3b)
0 for __-

2
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NRL REPORT 9125 "1
and

p (x) e e /o,

The probability that-v o ,_ v <_ P, for0 < vo <a a ais

P(i v <v0) = 2 [N lio/cr + jot - NUci I, (3c)
j=0

where N y is the normal or Gaussian distribution function

X2

FORMULATION OF THE GAUSSIAN STATISTIC " ,

To emulate the frequency fluctuations of real signals, the rate of variation (autocorrelation or .
power spectral density) of the statistic 'n must be controlled. This may be accomplished by low-pass
filtering a running sequence of independent random samples. Consider, then, that , is a zero-mean
sequence of independent random samples with standard deviation ua-. The desired output n can be
obtained by processing n through the discrete equivalence of a single-pole infinite-impulse response .,

(IIR) filter [1,21, whose normalized unit-impulse response is D

h= (I - 3)o3fs, (4)

where f., = i/At is the sample rate and 3 < 1 is the filter design parameter that controls the effec-
tive smoothing time or noise bandwidth of the filter. The effective bandwidth of the discrete filter is

= n 1 -3 (5a) ,- * .

2 n0 1 + 3 2

and the effective smoothing time is

1 1+3 1 (5b)
2B - 3f,

The normalized filter autocorrelation function is, from Eqs. (4) and (5b),

, r,, 3 ! = (3 (5c)
-0

In terms of the smoothing time r, the bandwidth B, or the autocorrelation at a time delay
t (n t/At t), the filter parameter becomes

3
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GERLACH. KUNZ, ANDERSON, AND FLOWERS

T - 1 _ f - 2B If"

f r +1 f + 2B - In, (6a)

The analog equivalent of this discrete filter is a single-pole low-pass filter whose cutoff frequency ( 3 0
dB down point) is

I 2B I - 0 (6b)
rr Ir 1+ 7r (6b)

The effective bandwidth of the random statistic ,. sampled at a rate fi is the Nyquist rate
f, /2. Consequently, the variance of n at the output of the filter is reduced by the factor
2B /f., = I/f, r. To make the standard deviation at the filter output equal to the desired standard
deviation a, the random statistic /,, must be multiplied by the factor c where, from Eq. (5b),

+S
NY c'r N (6c)

The output of the filter is obtained by using the discrete convolution relation [1,21

= 0 hjc ,_jAt. (7a) '
-

From Eqs. (4), (6c) and (7a), the Gaussian statistic , is formulated as
S

00

=1 0I-1) E(~~ 1  -13t- -j + 0I -J%°,

cr,, -- ,r

= n ± - - . (7b)

The random sequence n need not be Gaussian for n to be Gaussian as long as
T = (I + 0)/(l - 13) is large compared with one (by reason of the central-limit theorem). The

value f Tr is the effective number of independent samples of , in the filter smoothing process. This
value is expected to be very large in practical applications. %.

FORMULATION OF THE RANDOM SEQUENCE En

% e
A convenient method of generating the random sequence , n the digital computer is to ran-

domly select digital values R, between 0 and I at the sample rate f and to formulate ,, as "

, , = R , , - 0 .5 . ( 8 a , .: .

where it is assumed that all values of R, are equally likely to occur with each sample and thus arc -

independent. The random statistic has iero mean, and l'i M discrete values between 0 anti I the
standard deviation of ' is

a
4
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M+ I (8b)-
12(M-l1)

For M large, the standard deviation may be approximated as 1 /N12.

SIMULATOR DESIGN EQUATIONS

The design relations to simulate two narrowband random signals embedded in random noise is

now given in an orderly manner for convenient use in applications. The combined signal is con-
sidered to be a discrete signal sampled at a rate f., and expressed in the form

s, = ap sin (2irZp ,) + aq sin (27rZq n ) + 7ln , (9)

2,where 77,, is an independent zero-mean Gaussian statistic with variance a, and the functions 2 rZp, 0

and 2 lrZq,n are harmonically related random phase functions (modulo 27r).

Input Parameters

The following parameters are to be entered into the simulator program. 0

is the signal sample rate in Hz, Q"o

q > I is the harmonic ratio of the narrowband components,

fq= qfp is the mean frequency of the higher frequency component in Hz S

is the standard deviation of the Gaussian statistic ,, in Hz

is the standard deviation of the random statistic in Hz,

is the standard deviation of the random-noise statistic iz.

a is ratio of the peak-frequency fluctuation of P, to 0o, S

r is frequency-fluctuation smoothing time in seconds,

rq is the q-channel signal-to-noise rms ratio in dB/Hz, and

p = - is the difference in the p-channel, and q-channel signal-to-noise

rms ratios in dB/Hz. S

Random Signal Generation

The first step in signal simulation is to generate two random sequences of independent samples

T and . The statistic 7, is a zero-mean Gaussian statistic with a standard deviation of o. This

statistic is used as the broadband noise signal in Eq. (9), and its power spectral density is 2ao/j.

The statistic ,, is a zero-mean random statistic with a standard deviation of a,. This statistic is used %

as the kernal signal in the generation of the random phase functions for the harmonically related corn-
ponents in Eq. (9). The method of generating the two random sequences are left to the user.

5S
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Program Algorithms

The following algorithm formulations simulate the discrete signal given in Eq. (9):
2 1 r /20

a, = 2 (10)

2 r ,r/2o0,'
ap =aqlOP'20  2 u 'L 2  (11) "

fsTr- 1 I
3= f +(12)

= -- n + 1 - 2 t (13)

or,5

for n =0, 1, 2, 3.... .

0
V,, =cea Fracl,/a ci (14)

where Fracl-. implies the decimal fractional part of the argument while retaining the sign of the
argument.

Zqn = FracjZq._ + (fq + vn)/f (Zq. -I = 0) (15)

Zpn = Frac[Zp ni + fq + Vn)/qfjl (Zp, = 0) (16)

s~ = ap sin (2rZp.,) + aq sin (2 7rZqn) + 'in. (17)

EXAMPLES

To exemplify the use of the simulator, the following design parameters are selected to demon-
strate the performance characteristics.

= 256 Hz sample rate,

q = 1.75 harmonic ratio,

fq = 21Hz 12

0 = 0. 125 Hz.

t =3, and

T = 36 s (effective smoothing time).

These parameters imply that the upper signal frequency variation is bounded between 21 + 0,375
Hz, and the e-folding time of the fluctuating-frequency component is 18 s. iThe e-folding time is the

6::1
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time that the autocorrelation of the fluctuating-frequency component is equal to lie.) For harmoni-
cally related signals, the instantaneous frequency of the upper signal is precisely q times the instan-
taneous frequency of the lower signal.

D
Spectrogram of Example Signal Simulations

Harmonically related signals using the above parameters are generated along with a random
noise signal. The signal-to-noise spectral density ratio of both signal components was set to 8 dB/Hz.
A spectrogram of the resulting signal is shown in Fig. 1. The resolution of the spectrogram in the
example is 1/16 Hz. The two harmonically related signal components are located at center frequen-
cies of 12 and 21 Hz respectively. Superimposed on the spectrogram for comparison is a plot of the
actual fluctuating frequency v, given by Eq. (14). The scale of this plot was adjusted to closely
approximate that of the upper-frequency signal and placed over the spectrogram plot.

0- 3

1 4:

10-

20 - 3

.-- 10 2 0 3 0"'-

FREQUENCY (Hz) ,

Fig. I - Spectrogram of simulated harmonic signals in broadband noise. The mean frequencies of the
signals are 12 and 21 Hz (q = 1.75), and the signal-to-noise ratio of each signal is 8 dB/Hz. The reso-
lution of the spectrogram is 1/16 Hz. Superimposed on the spectrogram for comparison (at approxi-
mately 26 Hz) is a plot of the actual fluctuating frequency components v. Parameters of the signal are
given in the accompanying text.

Phase Characteristics of the Simulated Signals

The phase characteristics of the harmonically related signals are obtained by using Hanning- -

windowed sectionalized Fourier transforms (SFTs) to filter, baseband, and decimate the two nar-
rowband digital signals. The SFT sizes (integration times) for the upper and lower frequency signals P
are 2 s and 3.5 s, respectively, to contain the spectrum of the signals within the main filter passbands
of 0.75 Hz and 3/7 Hz respectively (31. The signal-to-noise power spectral density ratio in this case
is 30 dB 1Hz. The amplitude and phase characteristics at the filtered outputs over a 10-min. interval
are shown in Fig. 2.

The top two graphs (Fig. 2) are the plots of the amplitude and phase (harmonically transformed)
of the lower-frequency signal, and the middle two graphs are similar plots for the upper-frequency

7
%-.
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0

0 1 2 3 4 5 6 7 8 9 10
TIME (min)

Fig 2 Amplitude and phase ploits of simulated harmonic signals showing the coherent
nature of' harmionically related signals. Bhe signal-to-noise ratio of* the two signals is 301
dBlHz. and the signals havre been processed through propiortional SE:Ts whose bandwidths
encompass the spect rui ot the signals The top two graphs are temiporal ploits of (thec
amplitude and phase of the lower- frequency signal, and the imiddlec two graphs, are Sitmiltar
phlots of the upper -frequency signal. [The bottom two graphs shnow the amplitude In kuct and
the phase diffIerence of the two signals. Ifarnionic correlation of [the signals is the integration
tit the amplitude prodkuct i nes the cos ine if the phase diffteenct oserc r selected tinei
interval.

signal. The observed amplitude fluctuations are the result of' the nonunif'Orm filter characteristics
(scallop effect) of' the SIFT process as the instantaneous frequencies vary over time. The similarity ot'
the harmonically related signals is qutite evident. The hottom two graphs are plots of' the product of'
the two amplitudes and the phase difference between the two signals. This is of' interest since the har-
monic correlation between the two signals is the integration of' the amplitud-,' product times the cosine
of the phase difference over a given smoothing time. Because th,, phase difikrence is essentially zero.,
the harmonic correlation is effectively equal to the integral of' the product of' the amplitudes as
expected for harmonically, related narrowband stgnals. (rihe noise in mec two separated filter hands is,
for atll practical purposes uncorrelcttc(I).

O . . . . . . . . . . . . .
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To demonstrate the influence of the fluctuating-frequency components v, on harmonic correla-
tion, the above experiment was repeated by using independent and uncorrelated fluctuating-frequency
components for the two narrowband signals. The mean frequencies and the standard deviations of the
fluctuating- signal components remain unchanged. Figure 3 showAs the results.

The format of the plots in Fig. 3 is the same as for Fig. 2. In this case, however, there is little
similarity between the amplitudes and phases of the two signals. In particular, the phase difference
between the two signals (bottom graph) is radically variable over time. Thus, over a reasonable time V
increment, the integral of the amplitude product and the cosine of the phase difference can be
expected to be near zero, resulting in a low (or zero) correlation. This is to be expected for nar-
rowband signals that are not harmonically related.

0

, i j \ i5.!I ,..

0 " •

I I I I!T

0/
_ _- *] l I -p.-, I ! i ti

00

o - \ \.,t m ,, t , ,

0 1 2 3 4 5 6 7 8 9 10
TIME (min)

Fig. 3 - Amplitude and phase plots of simulated signals illustrating the incoherent nature of
the signals when their fluctuating frequency components are independent and uncorrelated.
The format of the illustration and the signal parameters are the same as in Fig. 2 with the one 0
exception that their random fluctuating frequency components are independent. The phase
difference between the signals is seen to vary radically over time. resulting in a Iow (or zero)
correlation over relatively long integration intervals (greater than I min).
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GERLACH. KUNZ. ANDERSON, AND FLOWERS

Instantaneous Frequency Distribution

The fluctuating frequency v and its distribution (or probability density) are given in Eq. (3). To
verify the distribution, approximately 4 million independent samples of p were accumulated, and the
distribution of v/ao was computed. The results are shown in Fig. 4...

The data in Fig. 4 are plotted as a function of the normalized variable v/Ur for oi = 3. The
continuous curve is the theoretical probability density given by Eq. (3b). The dots show the results ', ,
computed from the experimental data. Although these results (computed from the large sample size)
closely approximate the theoretical statistical distribution, it can be expected that results for a small
sample size (such as that realized over a period of 30 min) will deviate significantly from the theoreti-
cal predictions.

0.4 .

0.3-,

0.1

0.0 4 1
-3.0 -2.0 -1.0 0.0 1.0 2.0 3.0

Fig. 4 - Normalized instantaneous frequency distribution of the simulated
fluctuating-frequency component for a = 3. The continuous curve is the
theoretical probability density, and the solid dots are the experimental results
computed from approximately 4-million independent samples of the fluctuat-
ing frequency function v. For a small sample size, the experimental distri-
bution can deviate significantly from the theoretical curve.

CONCLUSIONS

I. A relatively simple algorithm is formulated to simulate harmonically related narrowband signals
with random frequency fluctuations in discrete format on a digital computer.

2. Signal parameters are incorporated into the algorithm to select the signal mear frequencies and
to control both the spectral bounds and the autocorrelation (or power spectral density) of the sig-
nal fluctuations. 0

3. Examples. using the algorithm, demonstrate the performance of the signal simulator and its con-
formance with theoretical predictions. The results are shown in Figs. I through 4.

10
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